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SUMMARY 

A solution for growth of a perturbation describing buckling deformation initiated by a local axisymmetric 
imperfection in an axially compressed elastic-plastic cylindrical shell is obtained in simple closed form for 
small time. The constitutive relations for the plastic strains are based on simple J~ flow theory. A compari- 
son is made with bifurcation analysis, and localization of the buckling deformation is examined. 

1. Introduction 

In an earlier paper [1], the author presented a rigid-plastic analysis of  localized axisymmetric 

buckling deformation in an axially compressed cylindrical shell in which buckling was initiated 

by a local geometric imperfection. The analysis yielded the solution for the t ime-dependent 

radial displacement as an infinite series that converged for all time. The predicted deformation 

was compared with deformation observed in experiments on moderately thick shells, radius/ 

thickness ~ 10, of  a structural aluminium alloy. Reasonably good agreement was noted in the 

extent  of  the buckling deformation along the shell axis between prediction and experiment. In 

the present paper, the analysis is extended to include elastic strains. A direct comparison with 

bifurcation theory is thus possible. Also it is found that,  for small time, the infinite series 

representing radial displacement can be summed in simple closed form. 

2. Linearized kinematic, constitutive, and equilibrium equations 

As in [ 1 ], the notat ion and analysis of  Timoshenko and Gere [2] are followed. The coordinates 

x, 0, z are chosen such that the x axis lies along a meridian parallel to the axis of  the cylinder, 

and the z axis points inward along a radius. The nominal radius of  the middle surface is a, the 

shell thickness is h, and the radial displacement positive inward is w. 

The axisymmetric stress field o x,  o o is written 

o x = - P + S x ,  o 0 =s 0 

where P is a uniform compressive stress, and Sx, s o are small perturbations due to the buckling 

deformation. Force resultants N x ,  N o are associated with the perturbation stresses Sx, s o , and 
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172 H. R a m s e y  

also couple resultants M x , M o . Subsequently the axial force resultant N x is neglected as in 
elementary elastic analysis [2]. 

Linearized kinematic relations for the strains e x ,  e o are introduced by putting 

_ o ( 2 . 1 )  e x - e  x + e  x + Z g x ,  e 0 =c~ + e  0 + Z n o ,  

0 where ex ,  e°o are the uniform axial, hoop strains due to P; e x , e o are middle-surface strain per- 

turbations associated with N x , N o ; and K x , n 0 are middle-surface curvature changes due to M x , 

M o . Since linear strain-displacement relations are considered, the radial displacement w can be 

identified with the buckling deformation, and hence, 

e o = - w / a ,  K x = - w ' ' ,  K o = - w / a  2 (2.2) 

where primes indicate differentiation with respect to x. The curvature change n 0 is neglected 

subsequently compared to K x, as in elementary elastic analysis. 
The total strains, and their components,  defined in (2.1), are now split into elastic parts 

el eeo t and plastic parts ~ t ,  ~ l .  The usual Hooke's  law relations then give, e x 

he  el = ( N  x - u N o ) l E  , heeo ' = ( N  o - U N x ) l E  , (2.3) 

el 
(h3112)tCx = ( M  x - u M o ) I E ,  (h3/12)Kg I = ( M  o - U M x ) l E  , (2.4) 

where E is Young's modulus and v is Poisson's ratio. Linearized constitutive relations for the 
• pt , ~ t  and plastic curvature change rates kPx t, k~ l, in the context of  the plastic strain rates e x 

present analysis, were previously established in [1] (equations (2.4)-(2.7)), using the von Mises 

yield condition and associated flow rule [3]. When the dependence of  the uniform axial com- 

pressive stress P on time t is taken in the form P = Po et ,  where Po is a constant representing com- 

pressive stress equal to or greater than the initial yield stress of  the material in compression, 

these relations become, 

hO~ l = ( 1 9  - ]9o /2) /H,  (2.5) 

h k ~  t = ( 3 N  o - 2 i l l  x +No)/(4H), (2.6) 

and 

• pt  O ( , l x _ ) ( , l o l 2 ) l H ,  (h3/ lZ)Kx = (2.7) 

( h 3 1 1 2 ) k  pt  = ( 3 M  o 2)1;/x +h; /o) / (4H ). (2.8) 

In (2.5) -- (2.8) and the following, the superposed dot denotes differentiation with respect to t, 
and H is the hardening modulus, assumed to be constant over the time interval that the growth 
of the perturbation is followed. 
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The equation of  radial equilibrium [2] 

M x - P h w "  + N o / a  = 0 

completes the specification of field equations for the problem. 

173 

(2.9) 

3. Bifurcation analysis 

Bifurcation analysis applies to an initially perfect shell that undergoes uniform deformation. 

For t ~< 0, w - N x = N o - M x =- M o =- O. Then, at t = 0, the possibility that w, fi/'x, fir0, Mx, 3;/o 
:/: 0 is investigated. With the additional assumptions of  elementary shell theory that N x,  g0 are 
negligible, adding the elastic and plastic strain rates obtained from (2.3) - (2.8) to form total 

strain rates, and then using (2.2) lead to the relations for the instant t = 0, 

Hh 3 1 + 4 H / E  

M x - -  12 ( 5 _ 4 v ) H / E + 4 ( l _ v 2 ) H 2 / E 2  ~b", (3.1) 

4 H h  
N0 - -  (1 + 4 H / E ) a  v~. (3.2) 

It is convenient to introduce dimensionless quantities: 

= x (6 lab)  1/2, W = w h / a  2 , 13 = H / E ,  (3.3) 

= 3 P a / ( 2 n h ) ,  K = (4/3) [ ( 5 / 4 - v ) 3  + (1 - p 2 ) 3 2  ]. (3.4) 

In (3.4), it should be noted that ~ = ~ since/~ = P. Differentiation of  the equation of radial 
equilibrium (2.9) with respect to t and substitution using (3.1) - (3.4) lead to 

[(1 + 4 3 ) / K  ] Ii/ .... + 4 ~ li,"' + [4/(1 + 4 3)] lip = 0 (3.5) 

which holds at the instant t = 0. In (3.5) and all following expressions, primes denote differen- 
tiation with respect to ~. In obtaining (3.5), use is made of the condition that w = W = 0 at 
t = 0 .  

For an infinitely long shell, a solution of  (3.5) can be taken in the form 

I¢ cc cos a ~. (3.6) 

Then (3.5) is satisfied provided 

4 q / = 4 ( 1  + 4 3 ) - 1 ~  -2 +(1 + 4 3 ) K - l c ~  2. (3.7) 

The minimum value of  q/, for 0 ~< a < ~ ,  i sK -1/2 . Thus the minimum load for bifurcation is 
determined by the condition 
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~ K  1/2 -- 1 (3.8) 

and bifurcation cannot occur when 

t~K 1/2 < 1. (3.9) 

In view of  (2.5) - (2.8), the plastic strains go to zero in the limit as H-+  ~o. It can easily be veri- 

fied using the definitions in (3.3), (3.4) that the bifurcation condition (3.8) reduces to the well- 

known elementary result for elastic buckling [2] in the limit as H ~ oo, namely 

P= Pcr = (Eh/a) [3 ( l - v 2 ) ]  - U 2  (3.10) 

On the other hand, the rigid-plastic case can be obtained from (3.8) along with (3.3), (3.4) in 

the limit as E -~ oo. As E -~ oo, it follows that K ~ 0 and 4,  P ~ oo, so bifurcation cannot occur. 

4. Perturbat ion  analys i s  

When Nx, K o are neglected in the constitutive relations ( 2 . 3 )  - (2 .8 ) ,  these relations can be re- 

duced to, 

(1 +4j3)Ar 0 + 3 N  o = 4 H h k  o, (4.1) 

K)~I x + (1 +/3)3;/x = (Hha /36) [(1 + 4/3)Y x + 3kx] .  (4.2) 

It is of  interest to note that, in the limiting case of  a rigid-plastic material, the coefficient K 

appearing with the highest derivative on the left side of  (4.2) vanishes. This difference strongly 

affects the method of  solution in the rigid-plastic case considered in [1 ] and the elastic-plastic 

case considered here. In either case, the constitutive relation between M x and K x can be inte- 

grated once with respect to t. This integration introduces an arbitrary function o f x  into the ex- 

pression for M x. From (2.2), (2.9), (3.3), (3.4), (4 .1)and  (4.2), it follows that W satisfies the 
equation 

[(1 + 4 ~ ) 2 I ~ + 6 ( 1  +4~)1 ,¢+9  W] .... 

+ 4 ~ [ K ( 1  +4 /3 ) I~+(1  +/3)(1 + 4/3) I4 '+K(5  + 8 / 3 ) I ~ + 4 ( 1  +/3)2W 

+ 4 K ( 1  +/3)W]" + 4 K I ~ + 4 ( 1  +/3)I~= Q(~).  (4.3) 

It is recalled that primes denote differentiation with respect to ~ and ~ = 4.  The function Q (~) 
on the right side of  (4.3) depends on the initial values o f M  x and W and their derivatives. Q (~) 

can be determined directly in terms of  W by putting t = 0 on the left side of  (4.3). Equation 
(4.3) is inhomogeneous if either W (~, 0), I~ (~, 0) or l~ (~, 0) 4: 0, and these three functions can 
be specified arbitrarily as initial conditions on (4.3). 
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A solution to (4.3) is now constructed by introducing an infinite series representation for W, 

W(~, t)= ~ [q'(t)lnWn (L t). (4.4) 
r t = 0  

The initial conditions to be specified on W will be even functions in ~. Hence W(~, t) can be 
represented by a Fourier cosine transform A (a, t), where the definition of the transform 
as given by Sneddon [4] is used. Then, with A n (a, t) denoting the Fourier cosine transform of 
W n (~, t) and R (a) the transform of Q (~), equations (4.3) and (4.4) become 

and 

[(1 + 413)2Jl " +6(1 +413)A + 9 A ] a  4 

- 4 ~ [ K ( 1  +413)A +(1 +13)(1 +413)A +K(5 + 8t~)A +4(1 +13)2A 

+4K(1 +13)A]a 2 +4KA +4(1 +13)A =R (4.5) 

The infinite series (4.6) is substituted for A on the left side of (4.5). Equating coefficients of 
C ° on both sides of (4.5) yields an equation for determining A0 (a, t), 

[(1 + 413)2J1,, +6(1 +413)A o +9Ao] a  4 +4KA0 +4(1 +13)-4o =R. (4.7) 

The general solution of (4.7) for Ao (a, t) can be written 

Ao = Go err + Ko est + Ro (4.8) 

where 

and 

r = - ( e - 3 " ) / q < O ,  s = - ( c + 3 " ) / q < O ,  0~<c~<o. (4.9) 

c=2(1  +13)+3(1 + 413)¢t 4 , q = 4 K + ( 1  + 413)2ot 4,  

3'= 2{(1 +13)z + [3(1 +13) (1 +413) - 9K]a  4 }1/2 

(4.10) 

(4.11) 

and Go, Ko, Ro are arbitrary functions of a. This general solution for Ao (a, t) contains three 
arbitrary functions needed to meet the initial conditions on (4.3). An infinite system of second 
order ordinary differential equations with constant coefficients for A n, n ~> 1, can be obtained 
by equating to zero coefficients of ~b n on the left side of (4.5) when the infinite series (4.6) is 
substituted for A. Since Ao already introduces three arbitrary functions for meeting the initial 
conditions on (4.3), the initial conditions 

A n (a, 0) = .xi n (a, 0) = 0, n >~ 1 (4.12) 
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can be assigned. Laplace transforms [4] in the variable t of the functions A n (a, t) are intro- 
duced and denoted by A n (a, p). In terms of these Laplace transforms, this system of equations 

can be written, for n = 1, 

{[(1 + 4 / 3 ) ( p + l ) + 3 1 2 a  4 + 4 (p + l ) [K (p + l) + (1 +/3)]}A1 

= 4 a  2 {(1 +/3)(1 + 4/3) [pAo - Ao(a, 0)1 +4(1 +/3)2A o} 

+ 4 K a  2{(1 +4/3)[p2A 0 - p A o ( a , 0 )  A0(a, 0)] 

+ (5 + 8/3) [PAo - Ao (a, 0)] + 4 (1 +/3)Ao } (4.13) 

and for n ~> 2, 

An (a, p) = fn (a, P ) A n -  t (a, p) (4.14) 

where 

fn (a, p )  - 
4 [ K ( p + n ) + ( 1  +/3)][(1 + 4 / 3 ) ( p + n ) + 3 ] a  2 

1(1 +4/3)(p +n )+  312a 4 + 4 ( p + n ) [ K ( p + n ) + ( 1  +/3)] 

In the rigid-plastic case, K = 0, so fn (a, p) is O(p-  1 ) as p ~ oo. Then fn (a, p) is, in itself, a La- 
place transform, and a solution of (4.14) for A n (a, t) can be written as a convolution integral 
depending on A n_ 1 (a, t). In the present case, this procedure does not hold. 

5. Solution for initial geometric imperfection 

Obtaining a solution to the original partial differential equation (4.3) is reduced to determining 
Wo, Wl and Wn(n >1 2) from (4.7), (4.13) and (4.14) respectively for specified initial condi- 

tions. From (4.6), (4.12) it follows that 

Ao(a,O)=A(a,O) ,  do(a ,  0 )=A(a ,  0) (5.1) 

while 40 (a, 0) can be determined by first setting t = 0 on the left side of (4.5); thus R is de- 
termined in terms of A (a, 0), d (a, 0) and 4 (a, 0). With R known, setting t = 0 on the left side 
of (4.7), and using (5.1) determines Ao (a, 0) in terms ofA (a, 0), d (a, 0), 4 (a, 0). With Ao (a, 

0), Ao (a, 0), Ao (a, 0) determined, the three arbitrary functions Go (a), Ko (a), Ro (a) in (4.8) 
can be found, and Ao (a, t) is completely determined. Three distinct initial-value problems can 
be considered by taking, in turn, one of the three functions A (a, 0), d (a, 0), 4 (a, 0) to be non- 
zero with the other two identically zero. The same technique to be presented applies in the three 
cases, so only one case, A (a, 0) 4:0 with d (a, 0) -- 4 (a, 0) - 0 is treated. In the moderately 
thick shells considered, little buckling deformation occurs until loading is well into the plastic 
state. The datum t = 0 can be chosen arbitrarily at any instant in the loading history once the 
specimen has reached the fully plastic state by simply using the current value of the uniform 
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compressive stress P as the value for P0 in the relation P = Po et. By taking t = 0 at a time before 
the buckling deformation becomes large, W(~, 0) and its Fourier cosine transform A (a, 0) can 
be identified with a geometric imperfection in the unloaded specimen. For small t, the analysis 
then applies to the early stages of plastic buckling when the buckling mode becomes established. 

The method of steepest descents [5] is employed in inverting the Fourier cosine transform 
Ao (c~, t) to obtain Wo (a, t), so it is convenient to represent the initial imperfection by 

Thus 

W(~, 0) = e -b~2 . (5.2) 

A (c~, O) = B = (2b)- l /2e -~2/4b (5.3) 

Specification of  the initial conditions is completed by putting 14) (~, 0) = Ii) (~, 0) = 0, and hence 

d (a, 0) = ,~i (a, 0) = 0 . (5.4) 

For b large, (5.2) describes an initial imperfection localized to the neighborhood of the origin. 
In view of (5.1) and (5.4) 

Ao (~, 0) = 0, (5.5) 

and (4.5), (4.7) yield 

J[o (c~, 0) = - 16 i o  (1 +/3) (1 +/3 + K) [4K + (1 + 4/3) 2 a 4 ] - 1  (2 2 B. (5.6) 

where, from (3.4), 

io = if(O)= 3Poa/(2nh).  

For tile initial conditions (5.3), (5.5), (5.6), equation (4.8) takes the form 

Ao(a, t) =B{1 - Coc~ -2 [1 e -ct/q ((c/7)sinh(~/t/q) + cosh('yt/q))]} (5.7) 

where 

Co =(16 /9) (1  +/3)(1 +/3 +K)  fro. 

Since the right side of (5.7) is an even function in 7, Ao (a, t) is a single-valued function of a. 
Ao (a, t) has a pole of order two at the origin and essential singularities where q = 0, that is, 
where 

~ = ( +  1 +i)K1/4(1 +4/3) -1/2.  

Ao (c~, t) has the Laurent's series representation 

Ao (c~, t) = BLo (c~, t) 

(5.8) 

(5.9) 
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where L0 (0/, t) is the Laurent's series beginning 

Lo (0/, t) = 1 - Co 0/-2 [1 - e - 3 t / ( 1  + 4 ~ )  (1 + 3t/(1 + 4/3))] + 0(0/-6).  (5.10) 

The Laurent's series Lo (0/, t) converges for 

I0/I > 60 = N / ~ - K  1 / 4  (1 +43)  -1/2 (5.11) 

where 60 is the radius of  the circle centered at the origin that passes through the essential singu- 
larities located by (5.8). From (5.3), (5.9)the inversion integral in the Fourier cosine transforma- 

tion for determining W0 (a, t) has the form, in terms of  a new variable ~" = ba,  

Wo ( ~, t)= (b/4 7r) 1/2 f e b(-r2 /4+i~r) Lo (b ~, t) d~. (5.12) 

This integral has the same form as in the rigid-plastic analysis [1 ], and can be treated in the same 

way, as follows. The path of  integration is taken as the real axis indented at the origin by a semi- 

circle P of radius 6 > 6o/b in the upper half-plane. As the semi-circle I" is traversed in the clock- 
wise direction, ~" = - 6  e - i~ ,  with ~ increasing from zero to rr. Hence, along I ' ,  

leb(-~2/4+i~)[<~eb62/4e -~b6sinf°, O~)~r r .  

The integrand in (5.12) can be made to go exponentially to zero along F as 6 ~ 0 by requiring 
that b6 -+ ,~ and b62 ~ 0. Putting 6 = 6o b-2/3  and letting b ~ oo satisfies both of these re- 

quirements. It should also be noted that 6 = 60 b-2/3  > 60 b - I  as b ~ 0% so the semi-circle I" is 

exterior to the circle of  convergence I~'1 = 6o/b of  the Laurent's series Lo in the ~" plane. Also, 

when b6 ~ oo, Lo ~ 1. The essential singularities do not contribute to the inversion integral, at 

least not in the limit as b ~ oo. Accordingly, the path of  integration along the real axis in the in- 

verse Fourier transformation can be deformed into any path lying in the upper half-plane, along 

which the order of  summation and integration can be interchanged on the right side of  (5.12) 

since Lo converges everywhere along the path. The method of  steepest descents can now be 
applied in the term-by-term integration of  the right side of  (5.12). The factor exp [b (_~-2/4 + 

i~ ' ) ]  is common to all integrands in the series, and so all terms have the same saddle-point, 

~" = 2~i, and paths of  steepest descent which are straight lines parallel to the real axis through 

the saddle-point. Since the leading term of  L0 in (5.10) is unity, the leading term in the asymp- 
totic expansion of  W 0 (~, t) as b ~ oo is simply 

Wo(~, t ) ~ e  -°~2 = W(~, O) (5.13) 

and thus the first term in (4.4) is the initial imperfection. 
With Wo (~, t) given by (5.13), 

Ao(~, t) =A(~,  O) = B  (5.14) 

and A 1 (a, t) satisfying the initial conditions (4.12) can be obtained from (4.13) as 
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AI (u, t) = C1 {1 - e -t(l+c/q) [cosh(),t/q) + (c + q),),-1 sinh(~/t/q)]} 

where 

C1 = 

179 

(5.15) 

p ~ oo, fn (a, p) is written 

L(~,p) =p +o(p -1) 

where 

4K(1  +413)u 2 
p =  

(1 + 413)20~ 4 + 4 K  

(5.21) 

~< K1/2,  - oo < a < ~ .  (5.22) 
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4(1 +/3)(1 +3+K)u2B 

( 1 + 3 + K ) + 4 ( 1  +3)2~ 4 

The expression in curly brackets in (5.15)is a single-valued function of  a with essential singu- 
larities at the locations given by (5.8). This expression has the Laurent's series representation 
L1 (~, t) which begins 

L1 (a, t)= 1 - e - t e  - 3 t / ( 1 + 4 3 )  [1 + 4(1 + 3) (1 + 4fl) -1 t + O (a-4)]  (5.16) 

and converges for I t~ ] ~ 6o. For t ~ 1, 

L l (a, t )=  8 (1 +13)2 (1 + 413) - 2 t  2 + O ( a - 4 ) .  (5.17) 

When just the leading term in LI is retained, which determines the leading term in the asymp- 
totic expansion of  W1 for large b, A 1 can be written 

A 1 (o¢, t) =BCt 2 (5.18) 

where 
32(1 +3)  3 (1 +13 +K)a 2 

C=C(a)= (1 +413) 2[(1 + 1 3 + K ) + 4 ( I  +3)2a  4] (5.19) 

It can be noted that A1 (a, t) as given by (5.18) satisfies the initial conditions (4.12). Then, 
from (5.18), 

A1 (a, p) = 2BCp -3 (5.20) 

The coefficient fn (a, p) in the recursion relation (4.14) is a rational function o f p  with sim- 
ple poles in the complex p plane where 

p = ( - n  +r), ( n + s )  

and r, s are given by (4.9). For real a, these poles lie on the negative real axis in the p plane. The 
inverse Laplace transform of  A n (a, p) in powers of  t is obtained by expressing the right side of  
(4.14) as a Laurent's series in powers of  p - l ,  which is convergent for p sufficiently large. For 



180 H. Ramsey 

The leading term p on the right side of (5.21) is independent ofn. The leading term of A2 (a, t) 
in powers of t is obtained by substituting p for fn, and the right side of (5.20) for Am, on the right 
side of (4.14). Thus 

A2 (a, t) = t2BCp (5.23) 

and continuing the procedure gives 

A n (a , t )= t2BCp  n - l ,  n/>  1. (5.24) 

Then, substitution in (4.6) from (5.14), (5.24) yields 

A(a, t )=A(a ,  0) [1 + t  2 ffC(1 + ~p +... + ~npn +...)]. (5.25) 

With S(a) representing the sum 

S(a)= ~2 q j n p n = ( l _ C ~ p ) - l =  4K+(1+4/3)2a 4 (5.26) 
n = 0 4K - 4K ff (1 + 4/3) ot 2 + (1 + 43) 2 a 4 

equation (5.25) can be re-written 

A(a, t) =A(u, 0) [1 + t 2 ¢C(a)S(a)] .  (5.27) 

In view of the bifurcation condition (3.8), (3.9) and the inequality p ~<K 1/2 in (5.22), the 
series S(a) converges uniformly in a, - oo < a < o% provided the load parameter ~b is less than 
the value for bifurcation. The expression C(a)S(a)  in (5.27) is a rational function of a with 
simple poles. Its inverse Fourier cosine transform G(~) can easily be found by means of the 
residue theorem. Hence, for ~/> 0, 

G([) : iN[(GI e ic~ t _ G~e- ic~* ~) + (G 2 eia2 t _ G~e- ic~* ~)], 

where 

N= 8(2rr)U2 (1 +3)3(1 +/3 +K)(1 +4/3) -2, 

al = (1 + 4/3)-1/2KU4[(1 + ~kK1/2) 1/2 +i(1 - t~K1/2)l/2], 

- i2~bKU2(1 +/3)a31 
G 1 = 

(1 +43)(1-~k2K)  1/2 [1 + 3 + K + 4 ( 1  +/3)2a4)] 

~2 = (1 +i) (1 +/3 +K)1/4(1 +/3)-1/2/2, 

4K + (1 + 4/3)2a~ 
G 2 -- 

4 (1 +/3)2 [4K - 4K ~ (1 +/3) a~ + (1 + 4/3) 2 a~ ] a 2 
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and the asterisk * denotes complex conjugates. The terms in cq arise from the residues at the 

poles of S(a), while the terms in a2 arise from the residues at the poles of C(a). Finally, W(~, t) 
can be obtained from (5.27), (5.28) by using the convolution theorem for the Fourier cosine 
transform [4], 

W(~, t) = e -b~2 + (27r)-l/2t2 ~ f0 °° e -brl~ [G(~ + ~/) + G(I ~-r /I)]dr? (5.34) 

where ~ >/0. Laplace's method [5], applied to the integral in (5.34) yields, as b ~ oo, 

W(~, t) = e -b~2 + (2b)- l /2 t2  t~G(~) (5.35) 

and it is recalled that ~, t]/are defined by (3.3), (3.4). 

In examining the behavior of G(~), it is useful to consider two limiting cases: (i) the purely 
elastic case obtained in the limit as H -+ ~;  and (ii) the rigid-plastic case obtained in the limit 
as E--> ~.  

(i) As H--> co, from (3.3), (3.4), the following orders of magnitude are noted: 

3 = O(H), K = O(H2), ff = o ( a - 1 ) ,  (5.36) 

and, with Pcr defined by (3.10)and P representing the current value of the uniform compressive 
stress, 

ffK 1/2 = P/Pcr = O(1). (5.37) 

Then, in view of (5.29) - (5.32) and (5.36), (5.37), 

N=O(H3), ~1 =O(1), ~2 =O(1), GI =O(14 -2) (5.38) 

In obtaining the order relation for G2, it needs to be noted that the terms of leading order 
O(H 2) in the numerator of (5.33) cancel, with the result that 

G2 = O(H-3) .  (5.39) 

Hence, 

~JNG1 = O(1), ~NG2 = O(H -1)  -+ 0. (5.40) 

Thus the terms in a2 drop out in this limit. The amplitude of the buckling deformation is 
governed by the factor 

(1 _ p 2 / p 2 ) - l / 2  exp [ -k~  (1 -P /P r )  1/2 ] (5.41) 

where 

k~=[(1 v2)/12] 1 / 4 ~ = [ 3 ( 1 - v z ) ]  1/4(ah) - l /2x  
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which agrees with results for elastic buckling in [2]. For P/Pcr < 1, the deformation dies out 
exponentially with distance x from the site of the imperfection. As P/Pcr -~ 1, 

(1 -e2/PZer)-l/2 -+0% exp [ -k~ (1 -P/Per)l/2]-+ 1. 

Thus the deformation spreads farther and farther along the shell as the critical load is approached 
and the amplitude increases indefinitely. 

(ii) In the rigid-plastic limit obtained as E ~ 0% equations (3.3), (3.4) give 3, K -+ 0, and 
hence G1 -+ 0. Then (5.28) reduces to 

a(~) = - 8  ~ e- ~/2 sin (~/2- rr/4) (5.42) 

which, apart from a multiplicative constant, is the function F1 (~) obtained in the rigid-plastic 
analysis in [ 1 ]. 

For the general elastic-plastic case, in view of (3.8), it is convenient to define q)er such that 

~er K1/2 = 1 (5.43) 

and to put 

X= $/~kcr = ~K 1/2 (5.44) 

For many ductile metals, including the 606 l-T6 aluminium alloy used in the specimens in [ 1 ], 

3 = H / E <  I 

for loading well past the yield point, and it is then appropriate to neglect 3 compared to unity. 
Then 

iN(G1 e icq ~ - G ' e -  is* ~) 

= _64(21r) l/2K3/4X( 1 __•2)--1/2 exp [ - K  1/4 (1 -X) 1/2 ~]' 

sin [K 1/4 (1 + X) 1/2 ~ + $] (5.46) 

where 

1-2X ( l + X ~ ' / 2  
tan~b- I+22, \ l - X ]  

and K is given approximately by 

K = (5 -  4 v) 3/3. (5.47) 
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When ~ is neglected compared to unity, the terms in a2 coincide with the limiting form as 

E ~ oo, namely, 

iN(G2e i~2 ~ - iG~e- i~2" ~) = _ 8 x/-~- e -  ~/2 sin (~/2-n/4). (5.48) 

6. Comparison with experiment 

Typical values for the material properties E, H, v for 606 l-T6 aluminium alloy are 

E = 7 3 G P a ,  H = 0 . 7 0 G P a ,  v = 0 . 3 3  

which give 

K = 0.012. 

The critical compressive stress Pcr for bifurcation is given by (3.4) and (3.8) as, with a/h = 8 
from [1], 

Pcr = 0.53 GPa. 

The average of  the maximum axial loads obtained in the experiments in [1 ] corresponds to a 

uniform compressive stress 

P = 0.36 GPa 

and hence 

~, = 0.68 

For these numerical values, (5.46) becomes 

iN  (Glei~ ~ _ G~e-i~ *~) 

= - 5.4 exp ( -  0.19 ~) sin (0.43 ~ - 0.34) (6.1) 

and, for comparison, (5.48) can be written 

iN(G2ei~2 ~ _ G~e-i~2 ~) 

= 14.2 exp ( - 0 . 5  ~)sin (0.5 ~j 0.78). (6.2) 

The right side of  (6.2) represents the deformation obtained using rigid-plastic analysis, while 
the right side of  (6.1) is the additional deformation resulting from consideration of elastic 
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strains. At ~ = 0, where the radial displacement is a maximum, the right side o f (6 .1 ) i s  15 per 

cent of  the right side of  (6.2). Hence the intuitive expectation that the elastic strains make only 

a small contribution to buckling deformation when buckling occurs well past the yield point 

is corrorborated. 

7. Discussion 

The present analysis shows that the bifurcation load is an upper bound on the buckling load, 
but does not establish a means of predicting what the maximum load will be. The analysis 

does show that, since the experimentally determined maximum load is considerably less than 

the load at bifurcation, the buckling deformation dies out exponentially with distance from the 

site of  the imperfection. If buckling were governed by the bifurcation condition, that is, by 

3. ~ 1, the exponential damping factor on the right side of  (5.46) would approach unity, and 

the buckling deformation should show a strong tendency to spread. Plastic deformation is his- 

tory-dependent. Bifurcation analysis neglects the effects of  initial imperfections or boundary 

constraints on the growth of  buckling deformation, and thus does not account for the localiza- 

tion of buckling deformation observed in experiments. 
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